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This paper is concerned with the L~vy, or stable distribution function defined by 
the Fourier transform 

1 f,~exp(_izu_[ul~)du with 0 < a < 2  Q~(z) = ~ oo 

When a = 2 it becomes the Gauss distribution function and when a = 1, the 
Cauchy distribution. When a r 2 the distribution has a long inverse power tail 

F(1 + a)sinl~r~ 
Q~(z)~ 

,~lzl 1 § 1 7 6  

In the regime of small a, if a[logz I << i, the distribution is mimicked by a log 
normal distribution. We have derived rapidly converging algorithms for the 
numerical calculation of Q~(z) for various a in the range 0 < a < 1. The 
function Q,(z) appears naturally in the Williams-Watts model of dielectric 
relaxation. In that model one expresses the normalized dielectric parameter as 

- -  ~ e  - i ~ t  e,(w) ~= e~,(0~) - ie,~' (w) f0 [d~(t)/dt] dt 

with 

~(t) = exp - ( t /$)  ~ 

It has been found empirically by various authors that observed dielectric 
parameters of a wide variety of materials of a broad range of frequencies are 
fitted remarkably accurately by using this form of ~(t). ~,~'(c0) is shown to be 
directly related to Q~(z). It is also shown that if the Williams-Watts exponential 
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is expressed as a weighted average of exponential relaxation functions 

exp - ( t / ' r )  '~= fo *~ g()t, a)e-at dt 

the weight function g(X, a) is expressible as a stable distribution. Some sugges- 
tions are made about  physical models that might lead to the Wil l iams-Wat ts  
form of ~,(t). 

KEY WORDS: Glass; polymer; dynamical response; momentless distribu- 
tions. 

1. LEVY DISTRIBUTION FUNCTIONS 

The definite integral 

Q,~(z) -- e x p ( - i z u  -lul~)du, 0 < a ~< 2 (1) 
O0 

appears prominently in two important contemporary fields of research: 
(i) theory of probability, where it is called a L~vy or stable distribution 
function,(1-4) and (ii) theory of relaxation processes (dielectric, mechanical, 
and NMR),  where when multiplying by ez it is referred to as the cosine 
transform of the Wil l iams-Watts  (5-8) function e x p ( - u ~ ) .  Of course the 
special case a = 2, the Gauss or normal distribution, has been prominent in 
all of science for years. One finds 

Q2(z)= -~ ~ eiZ"e-"2du-(a~)-l/2exp(-z2/4) (2) 
J - - O 0  

Integration over z from - m  to oc implies that Q~(z) is normalized to 
unity: 

Qo(z)dz= f f  l (3) 

The arbitrary a case was first considered by Cauchy (9) (1853) in an 
at tempt to generalize the least-squares theory of errors. He was not aware 
of the fact that Q~(z) is not a proper probability distribution when a > 2 
since it may, for some values of z, become negative. The use of the 
expression exp - [t/T] ~ as a relaxation function for dynamical processes in 
materials was first proposed by Kohlrausch (1866). Its reciprocal plays an 
important role in creep phenomenon (l~ and its Fourier transform appears 
in investigations of response of materials to periodic driving forces (electri- 
cal and mechanical). 

Closed form expressions exist for (1) for few values of a other than 
a = 2. When a = 1 one has the Cauchy distribution 

Ql(z) = (1/~r)(1 + z 2) (4) 
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When ~ = 1/2, (1) may be expressed in terms of Fresnel integrals: 

Q I / 2 ( Z )  _~f~ro _iZ%xp - 1s = e lu[du = - coszu exp - u l / 2 d u  
r162 q'i" 

1 s  ul/2 - sin zu d exp - 
zTr 

upon integration by parts. Now let y = u l/a. Then 

Ql/z(Z ) 1 s  = - -  e-YsinzyZdy (5) 
Z57 

This integral is given by [see Ref. 11, p. 303, Eq. (7.4.23)] 

1 g([  1/2rrz] '/2) (6a) Q!/2(z)- z3/2(27r)l/2 
with 

g(x)  = [ �89 - C(x)]cos�89 2 + [ �89 - S(x)Jsin�89 2 (6b) 

and 

S(x)  = s189 and C(x) = s (6c) 

being the Fresnel integrals. The function g(x) is tabulated in Abramowitz 
and Stegun. (11) 

The case a = 2/3  has been found by Zolotarev (12) to be related to the 
Whittaker function Wu,,(x): 

Q2/3(z ) = ( 3 ) l /2z- lexp(  - ~7z-2)W1/2, , /6 ( 2@z2 ) (7) 

The value of Q~(0) is immediately given by 

which becomes very large as ~ becomes small. 
Several important series expansions exist for Q~(z) for general a. If the 

exp - izu term in (1) is expanded in powers of z, one has (since the integral 
over the odd powers vanishes) the expression already known to Cauchy, 

o o  

Q,(z) = __1 ( m  e_lulo X ( -  1)'z2"u2" 
rr do .=o (2n)! du 

-- ~rc~l r to/ -- z2F 3~ -t-~.T zgr . . . .  o~ (9) 

It is easy to show, by using the ratio test, that this series converges for all z 
when 1 < c~ < 2. On the other hand, when 0 < ~ < 1, it diverges for all z. It 
may be considered to be an asymptotic series for very small z in the 
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divergent range. A. Wintner (1941) derived the important series expan- 
sion(13) 

( -  1) + 
Q~(z) rr ,=0 n! z--~-+l;+i sin[�89 + 1)a] (10) 

This series may be shown to converge for z > 0 (employing the ratio test 
and Stirling's approximation for the gamma function) when 0 < a < 1 and 
diverge for all z when 1 < a < 2. Even when 0 < a < 1, the convergence is 
very slow when Izl is small. 

Winter's expansion (10) has been rederived by several authors who 
seem to have been unaware of his original contribution. An alternative 
form for Q~(z) follows from Eq. (10) by using the recurrence formula 

F[1 + a (n  + 1)] = a (n  + 1)F[a(n + 1)] 

1 (-1)" r[1 + a( .  + 1)l 
Q,(z) = ~ n=02~ (n + 1)! z~("+l) +1 

sin[ + 1)] 

=__1 k (--1)n+l F(l+an)  sin�89 7;an when z > 0  (11) 
gr n=l n! z an+l 

Also, to find Q,~(z) for negative z we note that 

Q, ( - z )  = Q~(z) (12) 

The purpose of this paper is to (1) display the behavior of Q~(z) as a 
function of a and z, (2) derive rapidly converging algorithms for the 
calculation of Q~(z), (3) show how experimental dielectric relaxation data 
may be processed with the aid of these algorithms, and (4) discuss briefly a 
physical interpretation of the Williams-Watts relaxation model. 

An invaluable aid for the assessment of the accuracy of our algorithms 
is the set of tables for Q~(z) for a = 1/4, 1/2, and 3 /4  published by D. R. 
Holt and E. L. Crow (14) of the National Bureau of Standards. This paper 
also contains a rather exhaustive bibliography on stable distributions. As an 
introduction to the qualitative nature of Q,dz), we have plotted in Figs. 1 
and 2 the graphs of Q~(z) for a = 1/4, 1/2, 3/4, 1, and 2. Notice that the 
central peak in Q~(z) becomes increasingly higher as a decreases. We have 
tabulated some values of Q~(0): 

Q~(0) 0 . 8 9 1  2 6 1207215" 

to show that the central region becomes more &function-like as a ~ 0. On 
the other hand, for large z we find from Eq. (11) that 

F(1 + a)sin�89 
(13) Q~(z)..-~ rrlzl ~+' 
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L~vy stable density Q~(z) Eq. (1), vs. z for c~ = 1/4, 1/2, and 3/4. 

w h i c h  has  an  inc reas ing ly  l o n g e r  tail  as a decreases .  C o m p a r e d  to the  
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Fig. 2. Same as Fig. 1 f o r a = 3 / 4 ,  1, and2. 
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of a and if c I and c 2 are real constants, the random variable x = c1x 1 .-t- 
c2x 2 also has such a distribution with the same a. The reader will recognize 
that in the normal distribution (a -- 2), if the dispersion of x 1 is o 1 and that 
of x 2 is a2, the dispersion of the x is 

0 2 = c lo~ + c2o:: 

The general a case was first investigated systematically by Paul L6vy. (1) 
Notice from (13) that when a ~ 2, the second moment  of the distribution 
Q~,(z) diverges, convergence being restricted to the Gauss case. 

The complete class of stable distributions is a two-parameter family of 
functions of the variable z such that when a second parameter, u is set 
equal to zero one obtains the one-parameter family (1). If ~, is a real 
number, then the full class is defined by the set of functions (3) 

1 R e f 0 ~ e x p ( _  izu - u'~e i'~v/2) du (14a) p(z; ~,~,)= 

where 

I~1 = { ~ if 0 < a < 1 (14b) 
2 - a  if l < a < 2  

We have omitted comments about the case a = 1 which has certain special 
features since this case does not arise in our physical applications here. It 
suffices to discuss p(z; a,'/) where z > 0 since 

p ( -  z;  a, y )  = p ( z ,  a,  - y )  (15)  

The series expansions (9) and (11) have been generalized by Feller for the 
cases a 4= 1. Then, if z > 0 and 0 < a < 1, the series 

p ( z ; a , V ) = - I  ~ ( - 1 ) " r ( l + n a )  
~r , = ,  n-?.v zU~+i sin�89 - ct) (16) 

converges, while, if z > 0 and 1 < a < 2, 

1 1) 
~ n =  1 g/] sin (y - ct) (17) 

An interesting reciprocity expression exists 

z '~+'1 P ( z  -zl ; l__,a Y)=P(Z;CX'Y*) (18) 

with 

v* = a (v  + 1 ) -  1 

Holt  and Crow (14) have tabulated p ( z ; a , y )  for several values of 
including those mentioned above as well as certain values of y for each a. 

We begin our systematic investigation of Q,~(z) with an examination of 
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the small a regime, then we discuss Williams-Watts dielectric relaxation, 
and finally derive algorithms for the calculation of Q~(z). 

2. THE LI~VY DISTRIBUTION IN THE SMALL a REGIME 

The two fundamental equations for the understanding of this regime 
are the definition of Q~(z), Eq. (1), and the convergent series (11) for z > 0. 
As a ~ 0 Eq. (1) becomes 

1 Q~(z)~ ~ f_  e-iSU-ldu = e-16(z) (19) 

In the limit process we have lost the normalization property of Q~(z), Eq. 
(3), since from Eq. (19) fQ~( z )d z~e  -1 as a -~0 .  Normalization is recov- 
ered from the form Q~(z) achieves [Eq. (11)] as a ~ 0 :  

Q~(z) - - �89  ~ ( - 1 ) n + l  , 
= 1 n ! naz - n~- 1 z > 0 (20) 

Then 

1 ~ n a ( - 1 ) n + l f ~ 1 7 6  
zo ~ Q,~(z)dz= ~ ,= 1 n ~  zo 

=_12 ~ (-1)'~ ~ d z - ' ~ = - l n  v 2 ~ --(-1)" 
n=l " z0 n=l 

-->~ 1 -~- . i  + 3 - -T -4 - [+  . . . .  as a-~O. 

An identical contribution is picked up from an integration from - o o  to 
- z 0. Hence, as a ~ 0 

( f s z ~  1 - e  -1 (21) 

so that for very small a the narrow &function-like peak contributes 1 /e  to 
the normalization and the area under the long tail of Q~(z) provides the 
required leftover portion 1 - e-1. 

When a is small but not zero the series [Eq. (20)] may be summed to 
yield 

Q~(z)~ a e x p _  1 /z  ~ (22) 
2Z a+l 

As z ~ 0 this function vanishes. Hence it does not properly exhibit the 
high narrow peak in Q~ (z) near the origin. Since 

2jo f ~  2z z+la e x p ( _ z - ~ ) d z = l / e  (23a) 
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the narrow peak must provide our friend 1 - e-1 normalization. Postulat- 
ing the narrow peak to be Gaussian with the height at the origin given by 
Eq. (8), then the dispersion, a 2 of the Gaussian must be chosen so that 

F ( 1 / a )  ( -~  exp 7ra . , -  ~ ( - -  X 2 / 2 o  2) d x  = 1 - e 1 

o r  

(2~~ -1 
= 1 - e (23b) 

~ra 

Then 

~r )1/2 (1 - e-1)c~ _ 0.7922c~ ( (24) o~x , 5  r-(17 3 
A detailed investigation of Q,~(z) for small a will be given elsewhere. While 
postulating the Gaussian nature is not quite correct, it allows us to make 
some basic qualitative points here. On this basis, Q,~(z) may be written as 
the sum of a narrow Gaussian and a broad long-tailed distribution 

F ( 1 / a )  e x p ( _ z 2 / 2 a ~ )  + e~ exp - llzl ~ (25) 
Q ~ ( z )  - qra 2lzl -+1 

with the second term vanishing at the origin and the first having the peak 
given by Eq. (8). For very small a this function has the proper behavior for 
both small and large values of Izl. The form (22) has very recently been 
found independently by Garroway, Ritchey, and Moniz (15) in their discus- 
sion of Williams-Watts relaxation. 

An alternative form for Q~ (z) in the small a range may be obtained by 
rewriting Eq. (22) as 

a e x p ( -  e-~l~ z ) c~ e x p ( -  �89 c~21og2 z) 

Q ~ ( z )  2zexp(a logz )  ~ 2 z e  (26) 

where we have neglected terms of order t~ 3 and higher in the expansion of 
exp(-c~ logz). This log normal distribution is valid as c~--> 0 when z is not 
too large or too small. As in the case of Eq. (22) it is not normalized, but 
twice its integral from 0 to oc is (2~@/2/e. To compensate for this we add a 
Gaussian component whose value at the origin is given by Eq. (8). In 
contrast to Eq. (23) the dispersion % is now chosen so that 

(2vro2fl/2F(1/a) = 1 - (2qr)l/2/e ~ 0.077863 (27) 
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so that 

(�89 1 - e-l(2Tr)l/2]a 0.097587C~ 
= ( 2 8 )  

o. = r ( 1 / ~ )  r ( 1 / ~ )  

Then when a is small Q~(z) may be written as the sum of a narrow 
Gaussian and broad long-tailed log normal distribution 

r(1/a) exp - �89 (a210g2z) 
- -  e x p ( -  z2/202) + (29) 

Q,,(z) rrol 2ze 

The remainder of this section will be devoted to the improvement of 
Eqs. (26) and (29) to obtain expressions valid for 0 < a < 0.25. Again we 
use Eq. (11) as the starting point. When x is small (11) 

F ( I +  x) = e x p [ - 3 ' x  + m=2k ( - - 1 )mxm~(m) /mJ  (30) 

SO that for small x 

(sin�89 + x) = Im{exp - x(3" - �89 k ( -  1)mxmf (m) /m  
m=2 

(31) 

Here ~, is Euler's 3' = 0.5772156649 and ~(m) is the Riemann zeta function 
of m defined by 

~'(m) = k n--m 
n=l 

For small x it is easy to see by expanding both exponentials in Eq. (31) 

F(1 + x)(sin}vrx) = �89 1 - B2x ~ B3 X 2 . . .  ) (32) 

where, remembering that f(2) = 7r2/6 ,  { (4 )  = ",74/90, etc. 

7r 2 
B 1 = 1, B 3 = ~ +3, 2= 0.577822479 

3'~2 ,/3 f(3) 
B 2 = 3' = 0.5772156649, B4 = ~ - -  q- 6 -  + T 

,./7.23'2 3'4 3'~(3) 
B 5 - 19vr4 + + + - 0.625729013 

- 576------0 ~ ~ 3 

B6_  193'vr 4 3'2~'(3 ) 7g23'3 3'5 z(3)vr 2 

576~ + ~ + ~ + ~ + 7 ~  + - -  

= 0.670108648 

f(5) 
5 

(33a) 

(33b) 

(33c) 

= 0.6380936598 (33d) 
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w h e n  x is chosen  to be  x = (n + 1) as r equ i red  in  Eq. (12) for Q(z) 

1 ~ (-1) n~ (B _B2a(n+l)+B3a=(n+l)= . . . .  } 
Q ~ ( z ) ~  n!z~(.+,)+ , 

n=O 

= 21 ~ (-1)J+'BjaJz-(~+l)tgj_,(z-~ ) (34) 
j=l 

where  

pax) = ~ ( -  l) n 
n=0 n! ( n + l ) J x "  (35) 

No t i ce  tha t  

po(x) = e -x a n d  pj+~ = d [ x p j ( x ) ] / d x  for j > 0 (36a)  

p ,  = (1 - x)e -x, .02 = (1 - 3x  + x2)e -x, 
(36b)  

P3 = (1 - 7x  + 6x  2 - x3)e -x  

p4(x)  = (1 - 15x + 25x  2 -  10x 3 + x4)e -x (36c) 

ps(x) = (1 - 31x  + 90x  2 -  65x  3 + 15x 4 -  xS)e -X (36d) 

p6 (x )  = (1 - 63x  + 301x 2 - 350x  3 + 140x 4 - 21x  5 + x6)e -X (36e) 

H e n c e  

6 1 o3 4(1 z3o) 
Z'---a Z2 a Z 3a - ~  

Z a Z 2 a  Z 3a Z 4a Z 5a 

+ ' ' ' 1  (37) 

Th i s  is the express ion  to be  used  for the ca l cu la t ion  of z~rQ,~(z) for the smal l  

a regime of W i l l i a m s - W a t t s  d a t a  analysis .  N o t i c e  tha t  

_ ~ f o ~ Z - O - ~ / z - ~ ) d z = o  if j > 1 (38) 
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This follows from the fact that (setting x = z -~)  

since pj(~) = O, pj(x) having a factor exp - x. Equation (39) implies that 
similarly to Eq. (17), the contribution of the integral of the asymptotic 
expansion (37) to normalization is still the factor (18a). Equation (37) is 
very accurate for the analysis of Williams-Watts models when ~ < �88 In the 
experimental cases analyzed, the significant values of z are large enough so 
that (37) still converges rapidly. Table I gives values of the stable probabil- 
ity density Qt/4(z) from Holt and Crow (14~ along with calculated results 
using the algorithm of Eq. (37). The range of z displayed brackets values 
relevant to dielectric loss experiments. For the Debye model a = 1 (vide 
infra), the loss function zQ(z) is a maximum at z = 1. For a = 1/4, 
Zma x ~ 0.52, well within the range of Table I. The accuracy of Eq. (37) 
improves as a gets smaller, whereas other methods experience very slow 
convergence. (5-8) The deficiency of Eq. (37) at very small z has little 
consequence for the fitting of loss data. 

Equation (37) may be rewritten as a log normal distribution multiplied 
by a correction factor that is expressed as a series expansion in a if one 

Table I. Stable Probability Density Q1/4(z) Calculated 
Using "Small ~" Algorithm of Eq, (37) 

Qi/4(z) Qi/4(z) Percent  

Ref. 14 Eq. (37) difference 

0.1 0.3995 0.4015 0.5 

0.2 0.2157 0.2160 0.1 

0.3 0.1477 0.1477 0.0 

0.4 0.1120 0.1120 0.0 

0.5 0.0901 0.0905 - 0.1 

0.6 0.0752 0.0751 - 0.1 

0.7 0.0644 0.0643 - 0.1 

0.8 0.0563 0.0562 - 0.1 

0.9 0.0500 0.0499 - 0.3 

1.0 0.0449 0.0448 - 0.3 

2.0 0.0217 0.0217 0.0 

3.0 0.0141 0.0141 - 0.1 

4.0 0.0103 0.0103 0.0 

5.0 0.0081 0.0081 0.0 
6.0 0.0066 0.0066 0.0 
7.0 0.0056 0.0056 0.0 

8.0 0.0048 0.0048 0.0 

9.0 0.0042 0.0042 0.0 
10.0 0.0037 0.0037 0.0 
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writes each z - ~ as exp - a log z. Then if l a log z[ << 1 

Q ~ ( z ) ~ ( a / 2 e z ) [ e x p  - ( �89 ] 

• [1 - a2(B3 + B210gz ) + c~3(B4 + B310gz + �89 - ~log3z) 

+ c~4(2Bs + 2B410gz + �89 - ~B210g3z + ~4 log4z) 

+ ' ' ' ]  (40) 

3. WILL IAMS-WATTS MODEL OF DIELECTRIC RELAXATION 

We now indicate the relation between the imaginary part of the 
Williams-Watts relaxation function and the L~vy integral Q~(z). In the 
theory of dielectric relaxation one writes the frequency-dependent dielectric 
constant e(~0) as 

C(O~) -- ~-oo _ (~176 [deo(t)/dt] dt (41) 
q - -  e~ JO 

where q is the static dielectric c0iistant, e~ the high-frequency limit of the 
dielectric constant, and ~(t) is the function that describes the decay of 
polarization of a dielectric sample with time after a steady polarizing 
electric field has suddenly been removed. One generally writes 

- E' . (w) - ic,~' (o~) ( 4 2 )  
C S - -  Ec~  

where c~(w) and c~'(o~) are, respectively, the real and imaginary parts of the 
normalized dielectric parameter. In the classical theory of dielectric relax- 
ation due to Debye one postulates ~(t) to be a decaying exponential with 
the time constant, T, 

if(t) = exp( - t / T )  (43a) 

which yields 

e~ = 1/(1 + oo2T 2) and e,~' = Tool(1 + ~02T 2) (43b) 

While experimental dielectric relaxation data from many materials com- 
posed of simple molecules fit the Debye model, important exceptions 
become evident in polymeric systems and in glasses. These deviations are 
not surprising since in complex materials one would hardly expect the 
relaxation function to be a simple exponential decay. As an empirical 
expedient Williams, Watts, and their associates introduced a fractional 
exponent for ~(t), proposing that one try to fit (42) to experimental data 
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Fig. 3. Primary dielectric loss e" of poly(vinylacetate) at 62.5~ versus log10 frequency in Hz. 
Experimental  data O from Ishida, Matsuo,  and Yamafuji ,  Kolloid Z.  181}: 108 (1962). Theoreti- 
cal curve f rom Eq. (48) written as c" = A (zQ~(z) )  with z = 2~rfr and a = 0.56. The relaxation 
time r = 5.01 • 10 -3  sec and loss intensity factor A = 19.58. 

with q,(t) chosen as (5'6) 

~ ( t )  = exp - ( t / T )  ~, 0 < a ~< 1 (44) 

The es data of Ishida et al. (16) on polyvinylacetate at 62.5~ was 
identified with c)~(t) with a = 0.56 over five frequency decades (see Fig. 3). 
The Williams and Watts group, Moynihan and his collaborators, (v'17) 
Ngai, (18) and a number  of other investigators have found the Will iams- 
Watts function (44) to represent a "universal" model for a wide class of 
materials, especially polymeric ones. The a values generally range f r o m  
0.33 to 0.8. We have fitted data on several glassy mixtures (data due to 
Johari (19)) in Figs. 4 and 5 with smaller a values of the order of 0.2. These 
loss peaks are among the broadest to have been observed. Lindsey and 
Patterson (s) have achieved considerable success in applying the Will iams- 
Watts function to photon correlation spectroscopy. 

This remarkable record of empirical success motivates one to seek a 
physical model to give some intuitive understanding of the Will iams-Watts  
relaxation process. We attempt to make a contribution to that question by 
displaying a generic stochastic process that yields general features of that 
type of relaxation. However, we first note that e,~' is directly related to the 
L6 W function 

Q.(z)=lf_~exp(-izu-lui")du=ls176 (45) 
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cal  curve  as in Fig. 3 wi th  c~ = 0.203, ~" = 1.096 x 10 4 sec, and  A = 0.927. 
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Fig. 5. Secondary  dielectr ic  loss peak  intensi ty t a n 6  _---- c"/e" of neohexanol  vs. logl0 fre- 

quency  (Hz) at  (a) - 196.6~ ( •  (b) - 191.3~ (�9 (c) - 184.2~ (A) ,  and  (d) - 179.6~ 
(D). D a t a  f rom Johar i  and  C h a n  (to be publ ished) .  Theore t ica l  t a n 6  = B(zQ,~(z)), with 

(a) a = 0.195, ~- = 1.66 • 10 -3  sec, and  B = 0.235; (b) a = 0.23, z = 2.24 • 10 -4  sec, and  B 

= 0.256; (c) a = 0.237, T = 2.98 • 10 - s  sec, and  B = 0.265; and  (d) a = 0.25, �9 = 1.39 • 
10 -5 sec, and  B = 0.266. Whi le  we have  p lo t ted  t a n 8  = e"/e' in Fig. 5 ra ther  than  e", it has  

been es t imated  by  the exper imenters  tha t  e' does  not  vary  by  more  than  a few percent  in the 
f requency range  considered.  
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If we substitute (44) into (41) we find 

E~, - ie 2 (~o) = - f o ~ e - i t ~ d e x p  - ( t / T )  ~ 

= - f o ~ e - i U Z d e x p - u  ~ if u = t / T  and z=~oT (46) 

Integration by parts yields 

[ e,~(~0)-1 ] - i , :  (~o)= -Zfo~e-U~sinuzdu-iZfo~e-"~ 

so that 

1 - e; (~o) = Zfo ~ e - "  ~ uz du (47a) 

fo  = o e~' (~0) = z e - u cos uz du (47b) 

then e,~'(w) is related to the L6vy function Q~(z) by 

e~'(~o) = z~zQ~(z) with o~ = z / T  (48) 

In complex systems whose ~(t) do not have the simple Debye exponen- 
tial form, it is postulated that a general q,(t) might be expressed as a 
superposition of simple relaxation exponentials 

@(t)=fo~O~(.)e-t/~d~r with f0~ 1 (49) 

In the case that q~(t) has the Wil l iams-Watts  form, we note that 

exp - ( t / T) ~ = ~O~(.r)e-t /~ dr (50) 
dO 

Then, if we let 

where 

s = t / T  and /~= T/.r (51a) 

exp - s ~ = ~-20~(T/~)e-S.d ~ (51b) 

= ~ X ( / x ,  a)e  - "  d/x (5 lc) 
, , '0  

X( l~,a) = Tlz-2p~(T/lt) (51d) 

is the distribution of dimensionless relaxation rates ~ -  T/.r. Since X( t~, ~) 
is the inverse Laplace transform of exp - s ~ it has the integral representa- 
tion 

1 f c+i~Oe~e-,Ods (52) 
= y g  c-i  
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This notation essentially follows that of Lindsey and Patterson. The func- 
tion X( ~, a) was investigated in 1946 by H. Pollard, (2~ who found 

X(/~,�89 = �89 1/4/~) (53) 

and for general a 

X(/ t ,a ) - -  1 J0 e - . ~ e - .  . . . . .  sm(u%m~r~)du 'B" 

__ 1 ,_-~a(- 1 ~,s in2al  F ( l a + l )  
~r . v /x ~ ] tt F(I + 1) (54) 

Notice that if we compare this equation with Eq. (16) for a typical 
stable distribution, we find that [letting - a = �89 (y - ~) so that y = - a] 

X( ~, ~) = p(  ~, a, - a) (55) 

Hence the statistical aspects of Williams-Watts relaxation are directly con- 
nected with the statistics of stable distributions of the relaxation rates I~ 
= T / , .  

One may immediately find the small a approximation to X(/t,a) by 
following the ideas used in the derivation of (37) since the Wintner and 
Pollard expansions (10) and (54) differ only in the fact that (10) contains a 
factor sin�89 while (54) contains a factor sinTral, n and I both being 
integers. When o~ is very small 

x( t~, ~) = - k ~ (_ t ~ - ~ ) ' ~ a l / ~ l !  
~" / = 0  

= (a/ /~ '+~)exp - 1//~ ~ as a---~0 (56) 

From (51d), as a---) 0 

p ~ ( ' r )  = T - l p . 2 ~ k ( ~ , o 0  = T - l c ~ t - ~ e x p -  1//~ ~ 

= T - l a ( T / ' r ) 1 % x p  - ( ~ - / T )  ~ ( 5 7 )  

It is easy to derive correction terms for small but increasing a. The 
combination (sin~/a)I'(1 + al) that appears in (54) may for small a be 
expanded as [letting y - - - l a ,  and defining f(m) to be the Riemann zeta 
function ~'(m) = N~n -m] 

(sin~ry)r(1 + y)  

= Im(e-y(v- i ' )}exp  ~ ( -  1)mymf(m)/m 
m = 2  

= ~y { u, - yU~ + y~U~ - 9u4 + . . .  ) (58) 



Levy Distributions 145 

Here 7 is Euler's gamma, 7 = 0.5772156649; ~'(2)= ~r2/6; and ~'(3)= 
1.2020569031. Then 

U 1 = 1, U2 = 7 = 0.577215665 

1 2 972 
U3 = 2 Y 12 = - 0.65587807 

.[3 
~7r2 -- 0.04200264 U 4 = - ~ - +  ((3) 12 = 

~/4 l 7T2./2 "l- q74 "/~(3)  
U5 - 24 24 ~ + 3 - 0.16653861 

If (58) with y = al is substituted into (54) one obtains [following the ideas 
used in the derivation of Eq. (37) of Section 2] 

a ( e x p -  1//~ ~) 
#,~+1 

• [ 1  - - +   v3(1 - - ~  + 

- a3U4(1 - 7~ -~ + 6/* 2~ _/~-3~) 

"1"- oL4U5(I --  15/2 a ..[_ 2 5 ~ - - 2 a  __ 10~  --3a _[_ ] - - 4 a ) .  , . ] (59) 

This is an excellent expression for X(/z, a) for small a. It is easy to derive 
higher-order terms if necessary. 

If one is a purist and wishes to find a series expansion in a for small a, 
the procedure is to write/~-" as e x p ( - a  log/,). Then one finds 

/z-~- ~exp _/x  -~ 

= / * - l ( e x p -  alog/x) [ e x p -  e -"'~ ~*] 

=/x-'(exp - a l o g / x ) { e x p [ -  1 + a l o g / x -  �89 -Jr O(a3)] } 

= ( i / / , e ) e x p ( -  �89 1 + O(a3)] 

When this is multiplied by the terms in the curly brackets after each term of 
the form /~-" is written as the exponential of a logarithm, the following 
expression is found for 2t(/,, a): 

X( I-t, a) = (a /eb t )  [exp -- �89 a2(log ~)2] 
•  3+  U210g/,) 

+a3 (3U 4 + U31og/* + �89 U21og2/~ + ~log3~t) ' ' .  ] (60a) 
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This distribution of dimensionless relaxation rates is transformed into 
a distribution of relaxation times through Eq. (51d). We have defined 
t~ = T/ 'c .  Then from (51d) 

= [ ( a / e ) / l - ]  [exp - �89 a21og2(1"/T)] 

• {1- E u3- U21og('c/r)l 

"Jr- Od3[ U 4 - U31og(~"/T) + �89 U21og2('c/T)] �9 �9 �9 } (60b) 

For very small c~ 

O~('c)d'c = ( a / e ) e x p [ -  � 8 9  (61) 

Hence the ( log 'c /T)  has a normal distribution when c~ is very small. 
Since mechanisms are known that lead to log normal distributions, we 

exploit the appearance of that distribution for ( . c / T )  to introduce us to 
mechanisms that imply Williams-Watts relaxation processes at least in the 
small a regime. (21) 

Consider a complex event whose successful occurrence requires the 
successful conclusion of a sequence of n independent other events. The 
probability P of the occurrence of the required event in a unit time is (pj 
being the probability of success of t he j th  subevent in the required time) 

P = PlP2P3 �9 �9 �9 Pn (62a) 

so that 

logP = logp] + logpl  + - . . + logpn (62b) 

Since the Pi are independent random variables, so are the log Pi. If the 
appropriate moments exist for log pj and n is large, the central limit 
theorem is applicable and log P has a normal distribution. If, in an 
ensample of a number of possible events, one has a probability P of 
occurring, the expected time for its occurrence, "c, is proportional to l I P .  
Then 

n 

logT = log l I P  + const = ~ log 1 / e i +  const (62c) 
1 

Since each Pi is a random variable so is log l i p  i. Again, if n is large and 
proper moments of log 1/p~ = - log p~ exist, log'c has a normal distribution. 
The argument used for the investigation of log P was first presented by 
W. Shockley (22) as an explanation of the observation that in a large 
research organization the observed distribution of research articles pub- 
lished by staff members was log normal. In that example p~ was the 
probability that an author bad an idea for a research paper, P2 the 
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probability that he had the technical competence to pursue the idea, etc.; Pn 
would be the probability that a referee would finally recommend publica- 
tion. 

Let us suppose that we have applied an electric field for some time to a 
medium containing many polar molecules (or polar groups in complex 
molecules such as a polymer) and that the medium has relaxed around the 
polar groups to the degree that the dipole moments have been frozen in 
direction after the field has been removed. Furthermore, suppose that the 
medium contains defects, which through thermal excitation become mobile, 
some reaching the location of a frozen dipole and upon doing so relax the 
medium in the neighborhood of the dipole to the degree that the dipole 
may reorient itself as required in an approach to equilibrium. 

In a polymeric material the defect may be a local conformational 
abnormality induced by interaction of a polymer chain with itself or with 
neighboring chains, thus introducing local strains into a system. In glassy 
systems, which seem to have small a values, they may represent vacancies, 
dangling bonds, etc. If the defect must pass over many free energy barriers 
in its approach to a dipole, conditions required for the existence of a log 
normal distribution are satisfied. An alternative model that would yield the 
same distribution would be one requiring the dipole itself to surmount a 
large number of potential barriers in its attempt to achieve its final 
equilibrium state. Of course, the complete relaxation process might be a 
combination of the two. Glarum (23) has already introduced the idea that 
migration of defects may lead to relaxation processes in polymeric systems. 
However, his style of analysis is quite different from ours. 

Now let us consider the "large" a case beyond the log normal regime. 
As the general formula (54) for ~( ~, a) was examined carefully by one of us 
(EWM) it was realized that it was an old friend since it had also appeared 
in the Scher-Montroll  (24) model of anomalous charge transport in amor- 
phous materials. 

The following random walk process plays a central role in the exploita- 
tion of that model: A one-dimensional ring of N points (identified by 
l = 1, 2 . . . . .  N)  is constructed and at time t = 0 a random walker is placed 
at point l 0 on the ring while point N is chosen to be a trap (or absorbing 
barrier) for the walker. Since periodic boundary conditions (with period N) 
are employed, the point N is also equivalent to a point 0 that would be a 
trap for a walker approaching N from the "right" rather than the "left." In 
the model it is assumed that at each step a slight bias exists for a walker to 
step to the right rather than to the left. The random walk is postulated to be 
an alternation of steps and pauses. The modeling of the physical complex- 
ity of the subject amorphous material is centered in the distribution of 
pauses between steps. The charge carrier modeled by the random walker 



148 Montroll and Bendler 

encounters a wide variety of local situations in the execution of its motion. 
It sometimes must hop over or tunnel through high potential barriers and 
on other occasions it may proceed easily with but slight interference. The 
pausing time difference of two carriers trapped in potential wells of only 
slightly different depths may be considerable. On this basis, it is postulated 
that the pausing time distribution function has a long inverse power tail in 
the large-t regime 

~(t) cct - l -~ ,  0 < ~ < 1 (63) 

This is in contrast to traditional random walk theory that effectively 
postulates ~(t) to decay exponentially or at least to have a finite first 
moment. The single parameter a then characterizes a particular amorphous 
material. It is also postulated that a step taken in the random walk has a 
probability p of being to the right and q = 1 - p  < 1/2 to the left, thus 
recognizing a bias for motion to the right. Let the Laplace transform of t)(t) 
be 

~(s) = fo~e-Stt)(t) dt (64) 

Then it is known that if ~(t) has a long tail of the form (63), 

1 - gT(s) oc s ~ (65) 

A quantity of considerable importance in the Scher-Montroll theory of 
charge transport is the distribution function for a random walker originally 
at 10 to reach the trap or barrier at N for the first time. 

In the limit as the lattice becomes very large while the number of 
lattice points between the initial position of the walker and the boundary 
b = N - l 0 remains fixed, the required first passage time distribution is the 
integral 

1 f c+i~dseS~exp_ bs ~ = (66) 

precisely the form (52) of Williams-Watts theory with the ~ of Williams 
and Watts replaced by our ~- and b = 1. 

Scher and Montroll found that for c~ = 1//2 [Eq. (C6) in Ref. 24] 

f~ (7, b) - b exp( - b2/a'r) (67) 
2~rl/2~-3/2 

and for general a [Eq. (C7) in Ref. 24] 

f~,(,r,b)- 7r~'l [=o ~ ( ~ tsinerla I'(l + 1) (68) 

which is exactly (54) if we set b = 1 and replace ~" with/~. 
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Scher and Montroll, being ignorant of Pollard's paper as they wrote 
theirs, independently derived (53) and (54), neglecting to reference Pollard. 
However, they did go beyond Pollard in the derivation of the following 
result for a = 1/3: 

rfl/3(z, b) = (x/~r)(sin ~r/3)K1/3(x ) (69a) 

with 

x = 2(b/3~-l/3) 3/2 (69b) 

K, being a modified Bessel function of order p. They also showed that for a 
given a (with 0 < a < 1), in the small ~" (i.e., b/'r ~ >> 1) regime 

exp{[(a-l)/c,][c~bl,c~] '/(1-~)} 
= ( 7 o )  

rf~(T,b) [2~r(1 - a)(r" /ab) ' / ( l -~)]  1/~ 

Recently E. Helfand has found some correction terms to this expression to 
be applied as (b / r  ~) decreases. (25) A scheme was outlined in the SM paper 
for the expression ~-f~(~-,b) as a sum of generalized hypergeometric func- 
tions in the event that a is a rational fraction. From the above results it is 
evident that first passage time distributions for the described random walk 
processes are stable distributions just as the distribution of dimensionless 
relaxation rates for the Williams-Watts process is a stable one. 

Now let us return to our discussion of the calculation of relaxation 
times for the Williams-Watts model by first considering the case of 
a = 1/2 and distributions (67) and (53) (these distributions are often called 
Smirnov's distributions). The distribution of relaxation times is obtained by 
combining (53) and (51d) to find 

/01/2(,-/- ) = I r - 1 ( / s  _ 1/4/x) = �89 T l (T/~r) ' /2exp(  - "c/4 V) 

(71) 
when a = 1/3, we find from (69) and (53) that 

= r - '  ( r /T ) ' / 2  
2 

In the regime of very small ~- we have already noticed (57) that 

O~(T) = T - ' a ( T / ' r ) ' - % x p -  ( ' c /T)  ~ as a ~ 0  (57) 

Notice from these three examples that O~(~') shows an inverse power 
behavior in the small ~- regime. These special power laws follow from the 
general large/t  -- T/.r behavior of ?t(~t,a) as given by Eq. (54) 

h(/~, a)~(1/r  ~+ ')(sin ~'cOF(o~ + 1) 
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so that for small T = T/Iz 

P~(~') = T-'I~2~(tz 'a)--T- 'I--(T) l - ~ ' F ( a + r r  l )sin~a (73) 

Notice also that the large %p~(T) has a decaying exponential factor. In 
general, from (70) the exponential factor is 

e x p - ( [ ( 1 -  a)/a][a(T/T)~] 1/<l-~)) 
We have plotted ~'Tp~(~') in Fig. 6 for three a values a = 1/6, 2/6,  and 3 /6  
using formulas (57), (71), and (72). 

At first glance the reader might be concerned with the singularity of 
p~ (T) as T ~ 0, which implies the density of relaxation times to be infinite at 
the origin. Actually, this causes no difficulty since the singularity is very 
weak. The quantity that gives a better description of the distribution of 
relaxation times near the origin is the cumulative distribution function 

;i P~(~') = 0~(~') dr = fraction of relaxation times less than ~" 

By direct integration of (73) we find for small a 

P~(,r) = (l/a~r)F(sinva)(~c/T) ~, 0 < a < 1 (74) 

which of course vanishes at the origin. Clearly no serious accumulation of 
relaxation times begins until ,r is a significant fraction of T. This might be 
compared with an exponential p~(~-) = e x p ( -  , / T ) .  Its cumulative distribu- 

Fig. 6. 
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3/6 from Eqs. (57), (71), and (72). 
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tion function for small ~- is linear in ( z / T )  

P(T) = V( . r /V)  (75) 

rather than a fractional exponential. 
While we have called/~ = T/.c a relaxation rate, it is still interpretable 

as a dimensionless time, T being the time scale characterizing the basic 
dielectric relaxation process and ~-, the sample variable for the relaxation 
time distribution. It is again of interest to emphasize that it is in this 
variable that the relaxation process becomes identified with a stable distri- 
bution rather than the sample variable ~-/T. We believe the system is trying 
to tell us something, but we must admit, we have not quite caught the 
message in trying to work backwards from empirical formulas. We close 
our discussion of this topic by making some remarks on the more tradi- 
tional style of starting with a physical model and then proceeding to derive 
the observed results. 

In a basic theory of the decay of polarization function if(t) is generally 
written as 

Co(t) = ( M ( t ) /  M (O))av = (m(O) . m( t)) / (m(O) . m(O)) 

where re(t) is the instantaneous electric moment and the average is taken 
over an equilibrium ensample at temperature T in an electric field at time 
t = 0. On a polymer chain, one takes 

~(t) = ~ ~ {mk(0 ) �9 mt(t) ) /{mk(O ) �9 m,(O)) 
k 1 

where the set (ml} represents the individual dipoles on the chain. 
We consider the work of Shore and Zwanzig to be an excellent 

example of how the calculation of 0(t) should be made from a well- 
specified reasonable model. Their model is a set of rotating objects called 
spins distributed uniformly along a line with each spin interacting with its 
nearest neighbors. A subset of these spins is postulated to contain perma- 
nent dipole moments, those then being called dipoles. The dynamics of the 
spins is derived from the Hamiltonian 

U = J E  c~ - | ,) - / ~ E  ~-]* cos 0 k 
k k 

~ � 8 9  k - 0~+,)  - / z E Z *  cos 0 ~ 
k k 

- ~ J |  A �9 O - / ~ E ~ ] * c o s |  k (76) 
k 

when it is assumed that the variation in the various angle variables is so 
small that cos(O k - Ok+ 1) may be expanded in powers of (O k - Ok+ 1) and 
only terms up to the quadratic are retained. The constant term is irrelevant 
in the calculation. 
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The distribution of the (Ok}, f==-f(O l . . . . .  ON) is determined by 
showing the rotational diffusion equation 

Of 
0t - D r ~  ( V ~  •fV~ (77) 

D being the rotational diffusion constant for the spins. The next step in the 
calculation is, in the absence of the electric field E, to decompose the 
harmonic oscillator Hamiltonian U into its normal modes and to reexpress 
Eq. (77) in terms of these modes. Then f becomes factorable in terms of the 
functions of the individual modes and the PDE for f becomes separable 
and solvable. At time t = 0 one finds the equilibrium f with the electric field 
on by calculating the partition function for the system. 

The result finally established for the M(t)/M(O) for the model is the 
main time regime of the relaxation process 

M(t)/M(O) = exp - (Dt/~;fiJ)'/2 (78) 

which is precisely the Williams-Watts form with a = �89 An important 
feature of the intermediate steps in the calculation is the frequent appear- 
ance of the combination e-tll_m(t), which is just the probability that a 
random walker on a one-dimensional lattice who takes steps with equal 
probability to the left or to the right goes from lattice point m to l in time t. 

By combining the Shore-Zwanzig observation with our information 
relating the L6vy stable processes to the Williams-Watts model and our 
noting that the subject stable distribution is related to that found in the 
Scher-Montroll  model for charge transport with a pausing time distribution 
+(t)....t -l-~, we make a conjecture as to how the Shore-Zwanzig model 
might be expanded to yield a full range of a values in the M(t)/M(O) 
exponential. 

One should seek a natural way for the individual spins in the Shore- 
Zwanzig model to require a pausing time as they relax. This might come 
from interaction of an individual polymer with other chains or with distant 
parts of itself. The rotational diffusion constant D, perhaps, should hold a 
memory feature so that (77) becomes a generalized master equation, in 
which case the Laplace memory function would be related to the pausing 
time distribution as required. We are now examining this possibility as well 
as introducing similar ideas into the Glauber model of spin relaxation. 

4. AN ALGORITHM FOR THE CALCULATION OF Q~(z) FOR THE 
R A N G E  0.25 < z < 0.75 

The z range, 0.1 < z < 0.85 is observed experimentally in the applica- 
tion of the Williams-Watts model for relaxation processes in complex 
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materials. The subrange 0.25 < z < 0.75 is addressed in this section. Our 
strategy here is to develop an algorithm that is basically an interpolation 
formula which reduces to (9) for very small z and (10) for very large z. 
Since (10) converges we construct approximation formulas that basically 
contain a preassigned number  of terms in (10) plus a correction or "mod- 
ification" term that causes the formula to reduce to the first two terms in 
(9) in the very small z regime. Then each approximation formula has the 
correct behavior as z ~ 0 and as z ~ ~ .  

Let us examine the analytic and numerical behavior of a sequence of 
approximations Q~(z ,n )  to Q~(z)  of the form 

I l ~ Q ~ ( z , I ) = A  o l+--~Ao + z ~  Bo \1 ~ (79a) 

[ ( t (  )1 Q~(z, 2) --- A o 1 + z ~ A~ ]/~ ci c2 (79b) K 1+7 +7z 
n I -~/ 

K j=0 
with 

Ol 2 
+ - - Z  2 

~lA o 

Q ~ ( z , n ) = A  0 l + - - z  2 
~A0 

A o = ( 1 / ~ r a ) F ( 1 / a ) ,  A 2 = ( 1 / 2 ~ a ) F ( 3 / a ) ,  

B o = (a /~r) (s in �89  and ~/-- (1 + a ) / c  

The number  c is chosen so that (i) the lowest power of z in the combination 
of terms that contain z C as a prefactor is higher than z 2, i.e., 

c > n a + 2  

(ii) the approximating function gives the best agreement in some sense with 
the tables of Q~ (z) published by Holt and Crow for the a values 0.25, 0.50, 
and 0.75. Generally a different c value is chosen for each order of 
approximation and each value of a. 

For convenience we rewrite Eq. (10) as 

with 

G ( Z )  = Boz -1-~'  - f l l z  -1-2'~ + B2z -I-3 '~ " " " 

Bo = (o~/~)(sink~'ogF(o0, 

B~ = (a  /~r ) ( s inTra)r (2a) ,  

(8o) 

Let us examine the first approximation (79a) with c > 2(1 + a). When z is 

B 2 = ( a / 2 !  ~r ) ( s in~a)V(3a)  
(81) 

B 3 = (a/3!~r)(sin2~ra)F(4a),  etc. 
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small 

Q~(z, 1 ) = A  o 1 - ~  ~lA-----~+ -~o (zC-]-Cl Zc--a ) "ICO(Z 4) (82) 

Since c > 2 and  c - a > 2 + a > 2 the te rm propor t ional  to (Ao/Bo)  Vn is 
of o(z2). Hence  

Q,~(z, 1 )= A o -  A2z2 + o(z  2) as z-->O 

thus having the required behavior  for small z. 
For  large z we show that  Q~,(z, 1) has a large-z expansion whose first 

two terms are identical with those of (10). F r o m  (80), for large z, z ~ and  
z c-~ are bo th  of higher order in z than  z 2 since c > 2 and c - a > 2 + a. 
Then  for large z [using (82)] 

Q~,(z, 1 ) ~ A o z - ~ ( A o / B o ) - l [ 1  - qc,z -~] + ' ' '  

= BoZ-(1+~) _ ~ClBoZ-( l+2eO + o(z -(l+2a)) 

= Bo z - ( l + ~ )  -- B1 z-(l+2'~) + o(z -(1+2'~)) (83) 

if we choose 

c z = B,/~qB o =-- K, with ~.  ~ B j / ~ B  o (84) 

W e  proceed  in a similar manne r  in second order. F r o m  (79b) c must  
be  chosen so that  c > 2 + 3a.  W h e n  z is small 

Q~(z,2)  = A o - [ A 2 z  2 + vl(Ao/Bo)(Z C + c,z C-~ + Cz z~ z~)] + o(z  4) 

Since 

c > 2 + 3 a ,  

we find that  as z ~ 0 

c -  a > 2 + 2a, and c -  2a > 2 + a 

Q~(z,2)  = A o -  A2 z2 + o(z 2) 

as required. In  the regime of large z 

Q~(z ,2a )  

= BoZ-( l+a) ( l  -- T~(ClZ - a  "['- C2 Z - 2 a )  ~'- �89 n t- 1)C2Z -2a "}- O ( Z - 2 a ) }  

= B o z - ( l + a )  _ ~BoCl z - t - z a  

+ B0[ �89 0 + 1)c 2 - ~C2]Z -1 -3a  -t- O(Z - l - 3 a )  (85) 

This expression has the same asymptot ic  fo rm as (10) to third order for 
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large z if we set 

rlClB 0 = B 1 and 

or 

c I = B1/r iB o =-- K 1 

~ ( ,  + 1)Cl ~ - , ~ :  = B : / B o  

and c: = - K  2 + �89 + 1)K 2 (86) 

In the third order it is again found that for small z 

Q,(z ,  3) = A o -  A2 z2 + o(z : )  

while in the large-z regime 

Q~(z, 3) 

___ Boz-(l+~)[  1 - ~(c l z  -'~ + C2 Z-2a -Jr C3 Z-3a) 

+ 1 . ( .  + 1)(c~z-:"  + 2clc2z -3")  

- ( 1 /3 i )~ / ( .  + 1)( .  + 2)c~z -3" + o(z-3'~)] 

= BoZ - (~+~ - ,Bo~,Z -(~+~~ +[- B o ~ ,  + ~ , ( ,  + 1 ) B o 4 )  - ~ - ~ ~  

- - , U o Z - l - 4 ~  -- 17~(' O "Jr" 1)C1C 2 "4- l ( ,  ..1_ 1)(, o .1. 2)c 3] 
"1"- O(Z - 4 . )  (87)  

This expression has the same asymptotic form as (10) to fourth order if we 
set 

, c , B 0  = B , ,  k ~ ( ~  + 1) - , c :  = B 2 / ~ o  

c3 - �89 + 1)clc: + ~(rl + l)(~ + 2)c~ = B3/rIB o 

As before 

but now 

c , = K , ,  c2=  - K 2 + � 8 9  1)K~ 

e 3 = K 3 - (1 + ~I)KIK 2 + (1 + ~7)(1 + 2~/)K3/3! (88) 

Similarly for Q~(z, 4) we need 

C 4 = - K  4 -t- (1 -1- ~ ) ( K I K  3 At- I K 2 )  - (1 -[-- ~)(1  -~- 2~)(�89 

+ (1 + ~/)(1 + 27)(1 + 3~)K4/4!  (89) 

For higher cj it is useful to introduce the abreviations 

F , = ( 1 + ~ 7 ) ,  /72=(1 + 7 ) ( 1 + 2 V ) ,  r 3 = ( 1 + 7 ) ( 1 + 2 7 / ) ( 1 + 3 n ) ,  etc. 
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Then 

1 2 c I = K 1, c2 = - K  2 + ~K1FI 

c 3 = K 3 - F1KIK 2 + FzK31/3! 

c 4 = - K 4 + F,(K,  K3 + �89 2) - F2(�89 + F3K4/4! 

1 K K 2~ c5 = K s -  F,(K1K4 + K2K3) + F2(�89 + ~ , 2) 

- F3K~K?/3! + F~K~/5! 

C 6 = - -  K 6 -1- F, (K1K 5 + K2K 4 + �89163 - F2(�89 ~ + K, K2K 3 + ~K~) 

F3( ~K3K3 K~K 2 
+ ~ ' 2  ] - F4K2K4/4! + FsK6/6! + 

\ 

The pattern becomes clear, c, = ( -  1)" + lK, + linear combination of Fj with 
the coefficient of Fj being a sum of all products of (j  + 1) K factors whose 
subscripts add to n. If a particular K is raised to the mth power, that factor 
is to be divided by m!. The sign associated with a given Fj is evident from 
the examples listed above. 

By using these rules we construct several higher-order c,'s: 

c 7 = K 7 - FI (KIK 6 + K2K 5 + 1s163 

+ F~(~K~K~ + �89 + kK~K~ + K, KJq)  

K4,< K,K  ) Kj,4 ) 

- Fs(I,:2K~/5!) + F6K?/7! 

c8 = K8 - Fl(ZqI,:7 + K2K6 + X~K~ + ~I,: 2) 

+ F2(I,:,K~K5 + I~K~K4 + ~1,:~,I,:6 + ~IqK~ + ~I,:~K~) 

( KsK~ K4K2K? K2K? K3K2K1 K 4 ) +F~ --5V-. + ~ + ~ . , 2  + 2! + Y .  

[ K4 K4 K3K2K~ K2K 3 ~ ( KgK~ K2Kr  
- F 4 ~ +  3 ~  + 2!3! /+F~ --N--. +--U-. 

- F6(K6K2/6!)  + FvK8/8! 
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Table II. c Constants and Maximum Percent Errors for the Approximate 
Levy Densities Q~(z, n) in the Range 0.25 < ~ < 0.75 

c values 

Max % Max % Max % 

Approximation ~ = 0.25 error a = 0.50 error a = 0.75 error 
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Q,~(z, 3) 4.72 16 5.15 5 5.64 0.5 

Q~(z,5) 5.05 6 6.10 3 7.14 0.4 

Q~(z, 7) 5.35 2.4 7.10 1.7 8.10 1.1 

Q,~(z, 8) 5.53 1.3 7.55 1.3 9.00 1.1 

We now address the question of the accuracy of our approximations to 
Q~ (z) by referring to the tables of D. R. Holt and E. L. Crow. We compare 

our approximations to the tabulated Q,~(z) for a = 0.25, 0.50, and 0.75. One 
degree of freedom exists in each approximation for each a value to 
minimize the error; that is, the choice of the number c used in ~ = 
(1 + cO/c. 

In Table II are the values of c found for each of the four approxima- 
tions Q,~(z, 3), Q,~(z, 5), Q,~(z, 7), and Q,~(z, 8) along with the largest % error 

Table III. Comparison of the Approximate Levy Density Q,~(z, 8) with Holt and 
Crow (=4) for a = 0.25, 0.50, and 0.75 Using c Constants from Table II 

Q,(z, 8) 

z a = 0.25 % error a = 0.50 % error a = 0.75 % error 

0.1 0.3948 - 1.2 0.4704 - 1.3 0.3661 - 0.2 

0.2 0.2185 1.3 0.3416 0.2 0.3338 - 0.9 

0.3 0.1496 1.3 0.2625 1.1 0.2962 - 1.1 

0.4 0.1133 1.1 0.2097 1.2 0.2607 - 0.8 

0.5 0.0909 0.9 0.1726 1.1 0.2292 - 0.2 

0.6 0.0758 0.8 0.1456 0.9 0.2017 0.4 

0.7 0.0649 0.7 0.1252 0.8 0.1781 0.7 

0.8 0.0566 0.6 0.1094 0.6 0.1578 0.9 

0.9 0.0502 0.4 0.0967 0.4 0.1405 1.0 

1.0 0.0450 0.3 0.0864 0.4 0.1257 1.0 

2.0 0.0218 0.4 0.0392 0.2 0.0528 0.3 

3.0 0.0141 0.1 0.0238 0.0 0.0294 0.2 
4.0 0.0103 0.2 0.0165 0.0 0.0189 0.2 

5.0 0.0081 - 0.2 0.0123 0.4 0.0133 0.2 

6.0 0.0066 0.1 0.0097 0.1 0.0100 0.6 
7.0 0.0056 - 0.5 0.0079 0.0 0.0078 0.7 
8.0 0.0048 0.0 0.0066 0.0 0.0062 0.0 

9.0 0.0042 0.0 0.0056 0.0 0.0051 0.0 

10.0 0.0037 0.0 0.0049 0.0 0.0043 0.0 
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obtained using each constant. The c values in the table are the "best" ones 
for each ~ and approximate stable density Q~(z,n) in the sense that they 
give the smallest miximum error when the approximation is compared to 
the Hol t -Crow tables. (14) The errors quoted in Table II are the maxima, 
and for much of the z range each approximation is much better. In Table 
III is a detailed comparison of Q~(z, 8) with Holt  and Crow. The value at 
the origin is omitted since all algorithms are designed to give the exact 
value there. For  high z, the Hol t -Crow tables have only three or two 
significant figures, and the algorithm is more accurate in fact. A "best" 
value of c(~) that fits the quoted values at ~ = 0.25, 0.50, and 0.75 is the 
quadratic expression found from the Lagrange three-point interpolation 
formula, 

c (a )  = 2.94 + 11.5o~ - 4.50o~ 2 

We recommend the use of this expression for finding the appropriate c for 
all a in the range 0.25 < a < 0.75. Recall that the algorithm of Eq. (37) (cf. 
Table I) is very accurate for a < 0.25, so we have the range up to a < 0.75 
accounted for. 

5. AN ALGORITHM FOR THE CALCULATION OF Q~(z) FOR THE 
RANGE 0.75 < a < 1.00 

While this range of ~ seems too relevant for relaxation processes in 
complex materials, for completeness we include a discussion of it. We 
introduce another interpolation formula, one yielding a few terms in the 
asymptotic series for Q~(z) for small z [Eq. (9)] 

Q~(z) = A o - A 2  z2 q- A 4  z4 - A 6  g 6  - I -  . �9 �9 

with (as in the last section) 

1 1 F ~-) . . . .  A4 = 4._5_~ ~ ( 5  

and a few terms in the large-z range (10) 

Q,~(z) = Bo z - l - ~  - B I  z - l - 2 a  + �9 . �9 

with the B's defined by (81). 
The procedure in this range is to give more weight to (9) than to (10), 

just the opposite of the program of the last section. In particular we limit 
the agreement with (10) to only two terms while in each order we increase 
the agreement of the approximation or small z to one more order. 
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As a first approximation we set 

4A z Z 2 
Q,~(z , I )=A 0 1+  A~- ( l + a )  

+z4(  _~ )4/('+~)I 1 + 4B, 
( l + a ) B o z , ~ ] }  -('+~)/4 (90) 

When z is small the term containing the Bj may be approximated by 

z4-'~(Ao/Bo) 4/('+~)4BI/(1 + a)B o 

with 4 -  a >-- 3. Upon expanding the polynomial in z to the - (1  + a)/4  
power we find, as required 

Q,~(z, l) = A o - A2z z + o(z 2) 

If, when z is very large, we wish to retain only two inverse powers in z, we 
may neglect the first two terms in the curly bracket to find 

Q,~(z, 1)~Ao( Bo/Ao)z-('+~)I1 -- ( B , /  Bo)z -~ + o(z -~ ) ]  

as required. Notice also that when a = 1, Eq. (90) becomes 

Q,(z, 1) = (1/~r)(1 + 2z 2 + z4) -1 /2= 1/q',r(1 4" Z 2) 

the Cauchy distribution. 
As a second approximation we choose 

= Ao{ 1 + clz 2 + c2z 4 Q~(z, 2) 
% 

B00 1 + (1 + a)Boz" (91) 

Then it is easy to show by expanding this expression for small z that with 

6 
c~= ( ~ ) ( - ~ 0 )  (92a) 

(a + 7 )  
- 1 @ ~ )  A4 (92b) 

c, 12 c'~ - ( A00 

(91) agrees with (9) to terms of O(z 4) while as in the case of Q~(z, 1), for 
large z it is correct to the two terms listed in (10). 
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As a third approximat ion we have constructed the expression 

Q~(z,3) = A0(  1 + clz 2 + r Z4 + C3 Z6 

+ z 8 ( ~  0A0 )8/(l+a)[ 1 + 
8B1 ] }  - ( t +  ~)/8 

(1 + ,x)Boz" (93) 

Again it is easy to derive a set of cj's which yield for small z the expression 
correct  to the term 

c I = (A2/~Ao)  

c2 --_ _ (A4/,OAo) + 1 +___~ 2~ 2 (A2/Ao)  2 (94) 

= (A6/~Ao)  + (T I + 1)(Az/~Ao)  ,~ (1 + ~/) - C3 

- ~(~/+ 1)(~ + 2)(A2/~lAo) 3 

where v/= (1 + a) /8 .  
It is easy to show that  all of the approximations become exact in the 

limiting case a = 1. Since B 1 = 0 when a = 1 the coefficient of the highest 
power of z is (Ao/Bo)  = 1 raised to a power, which is of course still 1. Now 
let us consider Ql(z,2).  When  a -- 1 f rom Eqs. (91) and (92) 

c I = ( 6 / 2 ) ( � 8 9  = 3 

6 

Hence  

1 ( l + 3 z Z + 3 z 4 + z 6 ) - W 3 = ( 1 ) / ( l + z 2 )  Ql(z ,2)  = ~ 

as required. In a similar manner  in the case of Ql(z, 3), since ~/= 1/4,  a 
certain amount  of effort  expended on Eqs. (93) and (94) yields 

Qz(z, 3 ) = 1 (1 + 4z 2 + 6z 4 + 4z 6 + zS) - 1 /4=  1 / ( 1  + z 2) 
~- 7/" 

Incidentally, if ~x = 1 

A 0 = A 2 = A 4 = A 6 . . . . .  1/w 

While it is not  difficult to proceed to higher-order approximations,  the 
Q,~(z, 3) is already quite accurate in our range as evidenced from Table  IV 
for the worst case, c~ = 3 /4 .  
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Table IV. Comparison of the Second 
Approximation [Eq. (91)] to the Large 
Density with Holt and Crow for ~ = 0.75 

z Q3/4(2, 2) % error 

0.1 0.3669 0.0 
0.2 0.3367 0.0 
0.3 0.2995 0.0 
0.4 0.2628 0.1 
0.5 0.2298 O. 1 
0.6 0.2013 0.2 
0.7 0.1771 0.2 
0.8 0.1566 0.2 
0.9 0.1393 0.2 
1.0 0.1247 0.2 
2.0 0.0529 0.5 
3.0 0.0296 1.0 
4.0 0.0191 1.2 
5.0 0.0135 1.3 
6.0 0.0101 1.6 
7.0 0.0078 1.7 
8.0 0.0063 1.5 
9.0. 0.0051 1.0 

10.0 0.0043 0.0 
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